CYBERMAN

Example Security Assessment Report

Author: Collin Berman
Email: cyberman@collinberman.com
Date: 2024-05-08

Example Web Security Assessment Report

Summary

This example report was generated by taking an actual report delivered to a customer and removing
any reference to the customer name.

XXXXXxXxx contracted Cyberman for preliminary security testing of the web application
https://app.xxxxxxxx.com and associated API. 8 person-hours of manual testing was conducting
looking for vulnerabilities and assessing risk. The application was tested for common security
vulnerabilities including the OWASP Top 10, with a focus on user access controls and data
confidentiality.

The xxxxxxxx application is protected against many common threats to web applications. For
example, the use of "Log in with Google" and "Log in with email" passwordless features eliminate
entire classes of vulnerabilities related to password attacks. Moreover, the application is not
vulnerable to Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), Insecure Direct Object
Reference (IDOR), or other vulnerabilities that generally expose customer accounts and data to
unauthorized Internet attackers.

In fact, all identified vulnerabilities impacting data confidentiality require some advanced conditions in
order to exploit. For example, the only medium severity vulnerability (with a CVSS v4.0 score of 4.8) is
data exposed in the local browser cache, which is only accessible locally on a target's machine. The
low severity vulnerabilities listed in this report, while exploitable, either only expose limited information
or require significant cooperation on the part of a victim user.

As a health care clearinghouse, xxxxxxxx is required under the HIPAA Security Rule to "ensure the
confidentiality, integrity, and availability (CIA) of all electronic protected health information (ePHI)
[XxxxxxxX] creates, receives, maintains, or transmits" and "protect against any reasonably anticipated
threats or hazards to the security or integrity of such information” (45 CFR 164.306). Certain
vulnerabilities detailed in this report compromise the confidentiality of some ePHI such as client
names. By remediating these vulnerabilities, xxxxxxxx can show it has taken concrete actions to
ensure the security of its information.

Testing occurred from 3/18/24 to 3/27/24 and this report represents the security of the application
during this time period. Any modifications to the application after this time may affect the
vulnerabilities listed here or introduce additional vulnerabilities. In particular, features to support and
manage teams of users were not enabled at the time of testing.

https://www.ecfr.gov/current/title-45/section-164.306

Example Web Security Assessment Report

Findings

Medium Severity
 Sensitive data cached by browsers

Low Severity

* Cross-site Leaks

* Clickjacking

* Application session cookies shared with 3rd-party
» User email address enumeration

» Login CSRF

* HTTP Content / Missing HSTS

* Session Fixation

Informational

* 14-day session timeout

» Debug log stored in GitHub
* Fragile CSRF protections

Example Web Security Assessment Report

Finding Details

Sensitive data cached by browsers (Medium)

CVSS v4:
Base Score: 4.8
Vector String: CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:L/VI:N/VA:N/SC:N/SI:N/SA:N

Description:

* Legitimate use of the web application by authorized users results in the storage of sensitive data in
the browsers cache. Cached web responses are stored locally even after the user logs out of the web
application.

Impact:

* Attackers with local access to the machine may be able to read recently cached data. The data
available in the cache includes ePHI such as patient identifiers and test scores.

» Cache implementations vary across web browsers and operating systems: for example, recent
versions of Safari on macOS require administrator access in order to access the local browser cache.

Recommendations:

» The web application should instruct browsers not to cache sensitive information. All HTTP
responses containing sensitive information (e.g., https://api.xxxxxxxx.com/api/v1l/team-
member/reports/list) should include the following response header: Cache- Control : no-store.

Steps to Reproduce:

1. Log into the xxxxxxxx web application.

2. If there are no reports for the logged-in user, create a new report.

3. Log out of the web application.

4. In a terminal, navigate to the local cache directory (the cache location varies by web browser and
operating system).

5. Run the following shell command to identify sensitive xxxxxxxx data stored in the cache: grep -R
"{"reports":\[{" ..

6. View the files listed in the output of the previous command. Observe patient identifiers and test
scores in the file contents.

Resources:
« CWE-525
* mdn web docs: Cache-Control

Evidence:

(Image removed for client anonymity)

https://cwe.mitre.org/data/definitions/525.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

Screenshot Evidence (Chrome)

(Image removed for client anonymity)
Screenshot Evidence (Edge)

(Image removed for client anonymity)
Screenshot Evidence (Firefox)

Cross-site Leaks (Low)

CVSS v4:
Base Score: 2.3
Vector String: CVSS:4.0/AV:N/AC:H/AT:N/PR:N/UIL:P/VC:L/VI:N/VA:N/SC:N/SI:N/SA:N

Description:

* Cross-site leaks (XS-leaks) are a type of vulnerability that allows an attacker to infer information
about legitimate users. In this case, an attacker can infer whether a user is currently logged into the
XXXXXXXX web application if the user browsers to an attacker-controlled website.

Impact:

* Attackers can leverage XS-leaks to identify xxxxxxxx customers as the first stage in an attack before
further attempts at exploitation.

* Chromium-based browsers (such as Chrome and Edge) automatically prevent some kinds of XS-
leaks by treating cookies as SaneSi t e=Lax by default.

Recommendations:

» Set the xxxxxxxx session cookie with the SanmeSi t e attribute setto Lax (or Stri ct, however this
may negatively impact user experience when navigating to xxxxxxxx from a 3rd-party context by
asking users to re-authenticate).

» Setthe Cross- Ori gi n- Opener - Pol i cy (COOP) HTTP response header with a value of sane-
ori gi n (orsane-ori gi n-al | ow popups if the web application uses the wi ndow. open function
to open another website and communicate with it) on app. xxxxxxxx. com Note that

api . Xxxxxxxxx. comalready sets the COOP header with a value of sane-si t e.

* Set a restrictive X- Fr anme- Opt i ons policy and f r ane- ancest or s Content Security Policy (CSP)
directive as described under the following clickjacking vulnerability.

Steps to Reproduce:

1. Log into the xxxxxxxx web application.

2. In a new browser tab, navigate to a different site, e.g., ht t ps: / / exanpl e. com

3. In the new browser tab, open the browser's developer tools and switch to the console pane.

4. Run the following command to open xxxxxxxx in a new tab and maintain a JavaScript reference to
the window: w = wi ndow. open(' https://app. XXXXXXXX. coni reports')

5. Run the following command to bring the tab opened in the previous step to a first-party context in
order to enable the next step: w. | ocati on = "https://exanpl e. conf

6. Run the following command to count the number of redirects performed by the previous two steps
and remember this value for later reference (at the time of testing, this command logged 2):

consol e. | og(w. hi story. | ength)

7. Now, log out of the xxxxxxxx web application.

8. In the browser tab with the developer console open, repeat steps 4 through 6 .

9. Observe that the value logged is now one greater, indicating that an additional redirect back to the
login page is performed by the xxxxxxxx application when the user is not logged in (at the time of
testing, this value was 3).

Resources:

» XS-Leaks Wiki: Navigations
» Same Site Cookies Explained from Chrome Developer Relations

Evidence:

(Image removed for client anonymity)
Screenshot Evidence (logged in)

(Image removed for client anonymity)
Screenshot Evidence (logged out)

https://xsleaks.dev/docs/attacks/navigations/
https://web.dev/articles/samesite-cookies-explained

Clickjacking (Low)

CVSS v4:
Base Score: 2.1
Vector String: CVSS:4.0/AV:N/AC:H/AT:N/PR:N/UL:A/VC:L/VI:L/IVA:LISC:N/SI:N/SA:N

Description:

* Clickjacking attacks embed victim websites and overlay seemingly-innocuous content (e.g., a game)
in order to try to induce a victim to perform a series of actions on the victim page.

» For example, if you click in the top left corner of the webpage in the browser and drag to the bottom
right, scrolling, you will select most of the text on the page. Tricking a victim user into performing this
action in their browser, along with a copy and paste command sequence could compromise the
sensitive information within the page's contents.

Impact:

* In the case of the xxxxxxxx web application tested at this time, sensitive data available within the
web Ul is limited* to report titles, client names, and dates, which qualify as ePHI. The ability for a user
to edit or delete their existing reports does not exist in the web Ul, such that clickjacking does not
impact data integrity or availability.

*Perhaps we can imagine tricking a user into right-clicking a report link and selecting copy.
Fortunately, xxxxxxxx restricts Google Docs access by default to only allow authorized users.

Recommendations:

* Set the X- Frame- Opt i ons HTTP response header with a value of DENY or SAMEORI G Non all
responses from the web application.

» Set the Cont ent - Securi ty- Pol i cy HTTP response header with a value of f r ane- ancest or s
‘none'; orfrane-ancestors: 'self'.

Steps to Reproduce:

. Login to https://app.xxxxxxxx.com/login.

. Browse to https://app.Xxxxxxxx.com/reports.

. Open the browser's Developer Console. Select the Network tab.

. Refresh the page.

. Scrolling up in the Network pane, select the request to https://app.xXxxxxxx.com/reports.

. Scroll down to view the HTTP Response Headers.

. Observe that there is no X- Fr ame- Opt i ons or Cont ent - Securi ty- Pol i cy header present.

~NOoO O, WNER

Resources:

* OWASP Clickjacking Defense Cheat Sheet

* mdn web docs: X-Frame-Options

» mdn web docs: Content-Security-Policy/frame-ancestors

Evidence:

https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html#introduction
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html#introduction
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors

(Image removed for client anonymity)
Screenshot Evidence (Safari)

(Image removed for client anonymity)
Screenshot Evidence (HTTP Response Headers)

Application session cookies shared with 3rd-party (Low)

CVSS v4:
Base Score: 2.1
Vector String: CVSS:4.0/AV:A/AC:L/AT:P/PR:N/UIL:P/VC:L/VI:N/VA:N/SC:N/SI:N/SA:N

Description:

* XXXXXXXX Users' session cookies -- sensitive pieces of data that are used to authorize user actions --
are inadvertently shared with the third party Softr. This happens because api . XXXXXXXX. comsets
the cookie with the attribute domai n=. xxxxxxxXx. comset for permissive sharing with subdomains of
XXXXXXXX. com When a logged-in user then browses to XXXXXXXX. com(or WWw. XXXXXXXX. conj,
their browser automatically sends the session cookie in the HTTP request.

Impact:

» With a user's session cookie, an attacker is authorized to perform any action on behalf of the user.
At the time of testing, sensitive actions are limited to listing report titles, client names, and dates,
which are considered ePHI.

* The types of attackers who might obtain session cookies via this vulnerability could include IT staff
at Softr, malicious insiders or hackers within Softr, or general Internet users after a Softr data breach.
It is worth noting that Softr does not appear to be HIPAA compliant.

» Because session cookies expire after 14 days, the window of opportunity for an attacker to exploit
this vulnerability is limited. This vulnerability does not allow for mass exploitation of all users, but only
those that have logged in within the last 14 days.

Recommendations:

* Setting a cookie's domai n attribute instructs web browsers to include the cookie in requests to any
subdomain of the domain it was set on. This can be useful functionality for creating applications made
up of multiple services with different domains. However, care should be taken to avoid selecting a
domain that has untrusted subdomains.

» Rearranging subdomains can remediate the vulnerability. For example, moving the API from

api . XXXXXXXX. comto api . app. Xxxxxxxxx. comwould allow for setting

domai n=. app. XXXXxXxxx. comon the session cookie in order to avoid sharing the cookie with
XXXXXXXX. com

* This vulnerability can be completely remediated by restricting the session cookie so that it is not
shared with other subdomains. This is done by not setting the dorai n attribute. This approach
requires re-architecting the application so that app. xxxxxxxx. comonly serves static content, that
is, its behavior does not depend on whether users have a valid session cookie.

Steps to Reproduce:

. Log into https://app.xxxxxxxx.com/login

. Browse to https://xxxxxxxx.com, which is hosted by Softr.

. Open the browser's developer console and switch to the Network tab.

. Refresh the page.

. Click the first request in the list (you may have to scroll up) for www.Xxxxxxxx.com.
. Scroll down in the Headers pane to view the request headers.

. Observe that the Cooki e header contains the xxxxXxxxx session cookie.

~NOoO oI, WNERE

Resources:
» mdn web docs: Using HTTP cookies/domain attribute

Evidence:

(Image removed for client anonymity)
Screenshot Evidence

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#domain_attribute

User email address enumeration (Low)

CVSS v4:
Base Score: 0
Vector String: CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:N/SC:N/SI:N/SA:N

Description:

» The APl method / api / v1/ publ i c/ get - user - by- sl ug allows unauthenticated users to check
whether a certain user sl ug is registered on the xxxxxxxx application. By default, a user's sl ug is a
sanitized form of the user's email address, so that an attacker can likely guess a user's sl ug. Using
the API without authentication does not require a CAPTCHA.

Impact:
* An attacker may be able to exploit this vulnerability in order to identify valid users to target further.

Recommendations:

» Require authentication for this APIl. Add authorization checks so that a user is only allowed to
retrieve data about themself or other users in their team. Retrieving data about arbitrary users should
be an action reserved for administrator roles.

* Add rate limiting for this API endpoint if it needs to be called by unauthenticated clients.

Steps to Reproduce:

* Run the following Bash command in a terminal:

curl -X POST -H ' Content-Type: application/json' -d '{"slug":"collinbernman-
l-a-2-gmail-com'}' "https://api.xxxxxxxx.comn api/vl/ public/get-user-by-

sl ug'

Evidence:

(Image removed for client anonymity)
Screenshot Evidence

Login CSRF (Low)

CVSS v4:
Base Score: 2.0
Vector String: CVSS:4.0/AV:N/AC:H/AT:N/PR:L/UL:A/VC:L/VI:N/VA:N/SC:N/SI:N/SA:N

Description:

* Login CSRF is a type of attack where the attacker tricks a victim into logging in to the attackers
account. This could be accomplished, for example, by sending the victim a phishing email with the
attacker's login link. If the victim believes they are legitimately logged into their own account, they may
use the attacker's account to create a new report. The attacker would then be able to download the
report and be authorized as an editor for the Google Docs report.

Impact:
* After successful exploitation, an attacker would be able to access the reports that were created
while the victim was logged in to the attacker's account.

Recommendations:

* A session cookie is set in a user's browser when they initiate the "Log in with email" process. When
a user later logs in with the emailed link, validate that their browser has the correct session cookie.
This helps ensure that the user logging in is using the same browser that was used to initiate the "Log
in with email" process.

 Consider displaying a warning to users that log in with an different IP address or from a different
geographical region than was used to initiate the "Log in with email" process.

» Consider selecting a user's default profile picture from a set of multiple options, so that a user is
more likely to notice if they are logged into someone else's account.

Steps to Reproduce:

1. Browse to http://app.xxxxxxxx.com/login.

2. Initiate the "Log in with email” process with your user's email address.

3. Open the link that was sent to your email on a different device (e.g., your phone).
4. Observe that you are successfully logged in on the second device.

HTTP Content / Missing HSTS (Low)

CVSS v4:
Base Score: 2.1
Vector String: CVSS:4.0/AV:A/AC:H/AT:P/PR:N/UI:P/VC:L/VI:LIVA:LISC:N/SI:N/SA:N

Description:
* The xxxxxxxx web application serves content over unencrypted HTTP, in particular the login page at
http://app.xxxxxxxx.com/login is accessible without TLS/SSL encryption.

Impact:

* Accessing the web application over unencrypted HTTP can allow attackers on the same network
access to sensitive data, for example, user email addresses.

* Attackers that are able to insert themselves in the network communication path may be able to alter
the application's response to the user. For example, an attacker could add a password field to the
login page to try to trick the user into sharing additional sensitive information.

» Such an attacker could generate a fake response to trick the user into thinking they are successfully
logged in so that they will add their next report over the unencrypted HTTP channel. This impacts the
integrity of report data, as well as confidentiality.

Recommendations:

* Redirect the user to use HTTPS whenever unencrypted HTTP is used to request application
content.

Set an appropriate Stri ct - Transport - Security (HSTS) HTTP response header in all HTTP
responses to instruct users' browsers not to access the application without encrypted HTTPS.
Consider setting this header on the apex domain xxxxxxxx.com as well in order to protect against an
attack during the first time a user logs in to the application. The following example value can be used

for the HSTS header: Stri ct-Transport-Security: max-age=63072000;
i ncl udeSubDomai ns

Steps to Reproduce:

1. Browse to http://app.xxxxxxxx.com/login.

2. Observe that the browser's address bar indicates you are using an insecure connection.

3. If you are redirected to an HTTPS connection, check whether your browser may be enforcing
HTTPS for all connections.

Resources:
» mdn web docs: Strict-Transport-Security

Evidence:

(Image removed for client anonymity)
Screenshot Evidence

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

Session Fixation (Low)

CVSS v4:
Base Score: 2.1
Vector String: CVSS:4.0/AV:N/AC:H/AT:N/PR:L/UL:P/VC:L/VI:.L/IVA:N/SC:N/SI:N/SA:N

Description:

* Session fixation is a type of attack that requires an attacker to somehow set a cookie in a victim's
browser. By setting a victim's session cookie to a valid session value obtained from the application, an
attacker can piggyback on the victim's authentication process. When the victim logs into the
application, the attacker is also logged in as the victim by using the same cookie value.

» Setting a cookie in a victim's browser is not possible by default and requires exploiting another
vulnerability. For example, a cross-site scripting (XSS) vulnerability in www.xxxxxxxx.com or another
subdomain could be leveraged to successfully set a cookie of the attacker's choosing in victim
browsers.

Impact:

* Attackers may be able to circumvent the "Log in with email" authentication process. This requires
the presence of another vulnerability in another xxxxxxxx system, e.g., WWW.XXXXXXXX.Com.

» The "Log in with Google" authentication process is not vulnerable, as the / oaut h2cal | back
endpoint sets a new session cookie.

Recommendations:
» Set a new XXXXXXXX session cookie in the user's browser when the log in, even if they already have
a valid session cookie.

Steps to Reproduce:

1. Open a fresh browser window in Incognito mode. This is to ensure there is no stale session. This
browser will be called the attacker's browser.

2. Start the "Log in with email” process for any valid email, starting a new session.

3. View the xxxxxxxx session cookie from the browser's developer console. Cookies are viewed in
the Application tab in Chromium-based browsers and in the Storage tab in Firefox.

4. Copy the value of the xxxxXxxxXx cookie.

5. Open your other, non-Incognito mode browser. This will be known as the victim browser.

6. Browse to https://www.xxxxxxxx.com in the victim browser. Open the developer console to the
cookie editor, as in Step 3. This is simulating the impact of a potential cross-site scripting vulnerability
on another subdomain.

6. If there is an existing cookie named xxxxxxxXx, edit its value to the value copied in Step 4.
Otherwise, create a new cookie with the name xxxxxxxx and value from Step 4. Ensure the cookie's
domai n attribute is set to . XXXXXXXX. com

7. In the same browser, browse to https://app.xxxxxxxx.com/. Start the "Log in with email" process
with the victim's email address.

8. Complete the login process by opening the login link in the victim's browser.

9. Refresh the xxxxxxxx login page in the attacker's browser. Observe that you are logged in as the
victim.

Resources:
* https://owasp.org/www-community/attacks/Session_fixation

14-day session timeout (Informational)

CVSS v4:
Base Score: 0

Description:
» Users are automatically logged out of the PugWork application after 14 days. Although this satisfies
the HIPAA Security Rule's requirement for Automatic Logoff, 14 days is longer than recommended.

Impact:

* If a user does not manually logout, their session and associated xXxxXxXxxxX session cookie will
continue to be valid for 14 days.

* Leaving a workstation unattended presents a risk that can be mitigated by shortening the Automatic
Logoff time.

« If an attacker compromises a session cookie, they can continue to use the session cookie to
impersonate a valid user for the remainder of the 14 days.

Recommendations:
 Consider shortening the logoff timer to 30 minutes or allowing customers to set their own Automatic
Logoff time.

Steps to Reproduce:
1. Log into https://app.xxxxxxxx.com/login.
2. Observe that you are still able to view and add reports over the next 14 days.

Resources:
* HIPAA Security Rule: Automatic logoff

https://www.ecfr.gov/current/title-45/part-164/section-164.312#p-164.312(a)(2)(iii)

Debug log stored in GitHub (Informational)

CVSS v4:
Base Score: 0

Description:

» While not a security issue in this case, storing logs in GitHub is not a best practice. Logs do not
need version control and storing them in GitHub makes the repository more complex and harder to
manage.

Impact:
* No sensitive data was exposed in this case.

Recommendations:
» Consider removing debug logs from GitHub.
 Consider a dedicated logging solution like Cloud Logging.

Steps to Reproduce:
1. Browse to https://github.com/Xxxxxxxx/xxxxxxxx-saas/blob/main/saas/python-lambda/npm-
debug.log

Fragile CSRF protections (Informational)

CVSS v4:
Base Score: 0

Description:

* Cross-Site Request Forgery (CSRF) attacks rely on POST requests sent from an attacker controlled
website to the victim website. The xxxxxxxx web application is implemented to use a form of POST
request that is not allowed to be sent cross-origin by the Same Origin Policy (SOP), effectively
preventing CSRF attacks at the time of testing.

Impact:
» The xxxxxxxx web application is not vulnerable to CSRF attacks at the time of testing.

Recommendations:

* As a best practice, implement CSRF tokens, a more robust CSRF defense. Since the application is
stateful, the Synchronizer Token Pattern may be used (and has popular implementations in npm).

* Set the xxxxxxxx session cookie to have the attribute SaneSi t e=Lax. Note that this does not
defend against CSRF attacks launched via a vulnerability on another xxxxxxxx. comsubdomain
(e.g., Softr-hosted Wwww. XXXXXXXX. comn).

» Consider adding additional lightweight CSRF mitigations similar to Cont ent - Type validation, such
as a Double Cookie pattern. As another simple example, add and enforce an additional required
HTTP request header for all API requests, e.g., X- CSRF- Pr ot ect i on=1. These types of protection
mechanisms rely on the boundary of the SOP, in particular, what qualifies as a CORS request. In
general, requiring additional HTTP request headers that are not included in form requests can act as
a CSRF mitigation. While not bullet-proof, adding additional layer of defense-in-depth can reduce the
likelihood of a future CSRF vulnerability.

Resources:
* OWASP: Cross Site Request Forgery

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#synchronizer-token-pattern
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#alternative-using-a-double-submit-cookie-pattern
https://owasp.org/www-community/attacks/csrf

Example Web Security Assessment Report

TOOLS USED

Name Description

Burp Suite Web security testing toolkit
https://portswigger.net/burp

Nmap Network scanner used to discover hosts and ports
https://nmap.org

Nikto Website scanner used to discover common vulnerabilities
https://github.com/sullo/nikto

SSLScan A tool to enumerate supported cipher suites
https://github.com/rbsec/sslscan

Dradis Security reporting framework

Framework http://dradis.com

